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Considered is an automatic control system with nonlinear characteristics 
of the control object and with an essentially nonlinear characteristic 
of the controlling element. 

With the aid of biapunov’s method [ 1 1 an investigation is made of the 
stability of the undisturbed motion of the system for the case when the 
characteristic equation of the system has two zero roots, and when all 
its other roots have negative real parts. Use is made of certain results 
obtained earlier by Kamenkov f 2‘3 1. 

1. ‘Ihe equations of the disturbed motion of the system are assumed to 
have the form 

(k = I,!.. ., R + 1) 

dxn+2 
N-1 

-= f bJ>, dt fJ z: 2 Pa% + PnfzXnf2 
a=1 

(W 

Here the .xK are generalized coordinates of the control object; x,+2 
is the coordinate of the controlling element; CT is the control signal, 

ami b,, *kt Pas P,+ 2 are known constant parameters. 

We shall assume that f(o) can he approximated by a 
form 

f (CT) = Ka” + 'Kl(rN+l + . . . W>2f 

Let us suppose that the characteristic equation of 
trol has one zero root and n roots with negative real 

function of the 

(1.2) 

the object of con- 
parts. This corre- 

sponds to the neutrality of the object with respect to one of its n + 1 
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coordinates and stability with respect to the n remaining coordinates. 

Therefore, the characteristic equation of the entire system will have 
two zero roots; for example, let ha, 1 = X,, 2 = 0. The remaining roots 
x 1’ . . . ) An will have negative real parts. 

The problem considered in this note is the determination of the con- 
ditions of stability of the undisturbed motion of the system (1.1) under 
the above-made assumptions. 

2. Let us assume that the roots of the characteristic equation of the 
system f I.. 1) are known. We reduce the system ( 1.1) to the canonical form 
of Lur’e [4 1 

dz 
._“A. = k& + f (4 dt (s = 1, . . ., n), 

dzT&+l -= f (4 dt 

z=i MS + bl+1h-+x-- rf (6) 

Here, X,, .*., Xa are nonhero roots of the characteristic equation of 
the object of control. The parameters of the transformation 

and also the quantities &, . ..) B 
given in 14 3 . 

n+ 1 are determined by the method 

It is obvious that the characteristic equation of the system (2.1) 
has two zero roots, while the remaining n roots have by hypothesis 
negative real parts. 

Let us set cr = o1 + Alzl + . . . + A,z,. Then 

dcsl 
-= IL+1 %+z + dt 

oC=l 

Next we set AG = Is,,&, and introduce the notation o1 = z: 

P n+1&a+l. - W (0) = y, Ax + . 9 - + A, + r = II 

‘l’le system (2.1) can then be represented in the form 

dX 
x = Y, 3=r (x, y, Zl, . . ., zn) 

dt 

dz, 
dt= khi- X&,y, 2x,. . ., 4 fs= 1,. . ., n) (2.3) 

Here 

g = o (s, y, 21, * . ., GJl xs = f (cr) 
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I’ = Bn+, f (4 - blew”--’ 1 y -t- jj A, [Lcx + f to,} t. . . 
a-l 

The expansions of the functions Y and XS in power series will not con- 
tain any terms of degree less than two. 

Following [ 2 1, we can write the functions Y and XS in the form 

Y (5, y, J% - - ‘9 z,) = y, (2, y> + Yl (5, Y, 21, * * ‘f 4 

x, (IL”, y, 21, * . . , znf = x,, (5, ?/f f x,, (r, y, Zl, * . * , 2,) (2.4) 
Here 

Y1 (3, y, 0, . . ., 0) = 0, x,, (5, y, 0, . . ., 0) = 0 

and the functions Y,(x, y) and XSO(x, y) , in accordance with [ 2 1 , are 
expressed in the form 

Here 

We thus obtain the following 

ation: 

* -2 ‘PO (x) = B,nq* + . . * 

* *7 fps (x) = b,,& + * * . . 

equations for the system under consider- 

n 

‘p. (x) = - BKNcz+--I, I#,, (x) = . . . = 0 

Therefore 

a, = Bn+J, a, = N, b,=-BBKN,j3,=N-4 

Next, in order to simplify the construction of the Liapunov-Chetaev 
function, we introduce the transformation 

2s = Ys + US (4 + yvs (x) (2.6) 

‘Ihe functions u,(x) and V,(X) have to be determined in such a way 
that the degree of the lowest-degree term in the expansion of the func- 
tion f,(x) be not higher than the degree of the lowest term of the ex- 
pansion of fa(r). 

By retaining the notion (2.5) in the transformed system, we obtain 
the following equations for the determination of the functions u,(z) and 

v&4 : 
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h, us (z) -I- f* (4 + XSl(% 0, UJ = 0 (2.7) 

% (4 ‘PO (4 + cps (4 = 0 (2.8) 

It is important to note that the lowest-degree term in x of the func- 
tion u,(n) and u,(n) are equal to N and N- 1, respectively. For such a 
choice of the functions u*(x) and v~(x), the validity of the equations 

f,(r) = - sofa, and $,(x) = - v (x)&(z) will be guaranteed, and 

hence the made assumptions will also be fulfilled. ‘lhe quantities aa, 
b 0’ “0’ /3a will hereby not be changed, but in the tr~sformed system we 
have 

%),a, +N - 1, hk >, a0 + N - 2 (2.9) 
We can represent the transformed system in the form 

dx 
z=Y, $=fo(4 +YP,(s)+..*+{ gktykzJ'Wh)(yl, . , ., 

k,+kz=o 
Yn)} 

d% 
,=L,+f.(~)+~y"'F.k(~~+ ; ~kjyk~~~(klIkz) (y1, * . ., yn) 

k=l k,+kz=o 

(S = 1, * 1 *, n) (2.10) 

‘Ihe conditions (2.9) exclude the effect of the nonlinear terms of the 
right-hand side of the third equation of (2.10) on the stability of the 
system. It remains to transform the system (2.10) in such a way as to 
exclude the effect on the stability of the terms contained within the 
braces of the second equation of (2.10). It was shown in [3 I, that such 
a transformation, which does not change the stability problem, does 
exist and can he found. ‘Ihe sumnation on the right-hand side of the 
second equation of (2.10) can thus start with the indices k, and k, 
satisfying the condition k, + k, z a0 + N - 1. This transformation does 
not change the first a0 + N - 1 terms of the expansion of the function 
fa(x) in powers of z, and the first a,, + N- 2 terms of the expansion of 
the function #+,(x) in powers of AZ. Thus, having established the existence 
of such a transformation it may still be impossible to perform this 
transformation because the aa, b,, aa, and /3a may not change. 

After the performed transformations, the criterion of stability can 
be obtained by the method of 12 I. For the stability of the undisturbed 
motion of the system (1.1) it is necessary and sufficient that the 
following conditions be fulfilled for odd N: 

Bn+J < 0, BKN>O (2.M 

l’he requirement that N be odd can be reduced to the requirement that 
the characteristic of the controlling element be odd. The condition 
(2.11) makes it possible to construct the region of admissible values of 
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the parameters of the control system by starting with the stability of 
the undisturbed motion of the system (1.1). 

3. Let us consider the case when the roots of the characteristic equa- 
tion of the system (1.1) are not known. One can determine the indicated 
properties of the roots of the characteristic equation of the system in 
this case directly on the basis of the coefficients of the equation by 
the Hurwitz-Routh criterion without solving the equation. 

Let us consider Equation (1.1). We introduce the following trans- 
formations: 

n-H n+s 

(3.1) 
k=l k=l 

?he coefficients A, and Bk are determined by means of the equations 

dx 
-ZZS 

dt y’ g = Y (Xl,. . .) x,.pJ 

Here Y(xl, . . . . x,+~) is a holomorphic function of its variables 

which does not contain any terms of degree less than two. 

For the determination of A, and Bk we obtain identities which give the 

required number of equations 

Finding A, and B& one can, by means of (3.11, express r,+ I and 

x,+ 2 in terms of r, y, x1, . . ., x, and substitute them in the system 

(1.1). Then the system (1.1) will take the form 

dx dy 
dy=Y’ s-- - y (2, y, 21, * . .) 2,) 

(s = 1, . . ., 12) (3.3) 

Here 
11 

0 = 2 Pa'Xu -I- Px” + PltY7 Y = Bn+d (a) + An+., ‘y 

Introducing the transformation xS = y, + CSx + DJ, and determining 
Cd and DS by means of the equations 
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5 QsaCa + p$ = 0, i qd, + qs - C, = 0 
a=1 LX=1 

we obtain in place of (3.3) the following system: 

1513 

(3.4) 

dx 
z=Y, $= Y (xc, y, Yl, - * *, yn) 

(lYs 
n 

-= 
dt 

2 qsayl + & (x, Y7 Ylt * * *7 YTJ (s = I,. . ( II) (3.5) 
a=* 

We retain the representations (2.4) and (2.5) for the functions Y and 
XI. Expanding the expression for Y, we find the following lowest-degree 
terms of the expansions of the functions fO(x) and q+,(n): 

a, = N, &=N-I, a, =N, bS=N-l 

a, = &+,K ( i pa’& +P%)~ 
a=1 

b, = NK&+, ( i ~..C,+px)~-~ ( $ 
a=1 Cr=l 

po,‘D, +p,)+NKA,+2( i px’ca -+P,)” 
a=1 

‘Ihe system (3.5) has to be subjected to transformations which make it 
possible to judge the stability of the motion just on the basis of the 
terms with f,,(x) and 4,,(n). Omitting the discussion and derivations, 
which are analogous to the earlier ones, we shall write down immediately 
the necessary and sufficient conditions for the stability of the undis- 
turbed motion of the system (1.1). 

IV has to be an odd number, and 



1514 S.A. Gorbatenko 

K&l,, (iP,‘Ca + p.i <o 
a=1 

iTKB,_,, (iParca + ~~)~--l(idL +~~)+NKA,.,,(-&I,'c, + p,.N<o 
a=1 Cl-l a=1 

(3.6) 

Just as in the preceding case, the requirement that N be odd can be 
reduced to the requirement that the characteristic of the control ele- 
ment be odd, and the conditions (3.6) make it possible to construct the 
region of admissible values of the parameters of the control system by 
starting with the stability of the undisturbed motion of the system 
(1.1). 

4. Let us consider the case when the condition a0 > p, is violated, 
i.e. when ,C$ > aO. It is obvious that in this case the problem on sta- 
bility cannot be solved on the basis of the lowest-degree terms of the 
expansion of the functions fo(x) and $(x), and that it is necessary to 
take into consideration liigher-degree terms. 

Suppose that a0 < 0, a0 is an odd number, and PO > (a0 - 1112, or 
/3o > n where a0 = 2m + 1. 

Without changing the problem on stability, let us introduce the trans- 
formation 

z = r cos 0, ?J=- rm+i sin fl (r > 0) 

In place of (2.10) and (3.5) we then obtain the system 

g = r”“t+lR1 (8) + I*m+% (0) + . . . + r“xa+N--m -jj $Bk (0, yl, , . ,, Yn) 
k=o 

dYs 
- = PsrYl + * * dt .+ PsnYn + rao+N ; rk&t( 0) + ; r'J%k (0, yl, . . ., yn) 

k-0 k=o 
(s = 1, , . ., n) 

Here 
Q. (8) = (m + 1yl+a-f~+2~ 

Rh. (e, 0, . * .) O} = 0, & (6, 0, . . ., 0) = 0, a&(8, 0, . . ., 0) = 0 

Following Liapunov 11 1 , we define 
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Rl = c 
3 dfJ 

;;Qo 

We next introduce the notation 

C (0) =\(g+)dfJ 
0 

We note that C(0) is a bounded periodic function of 8 of period 2~. 

Assuming that g, f 0, we introduce the substitution 

p = r&Q (P > 0) 

We now pass from the system (4.1) to the following system: 

dp 
- = P”+iglPl(fl)+ pmsap2 (0) + . . . + p"o+N-m 5 pkp,(e, 91, . . . . yn) dt 

(4.2) 
k=o 

4 
- = pmFo (0) fpm+‘F1 (0) f . . . + pao+N-i--nz i PkFk (8, ?&, . . . , &,) dt 

k=o 

% 
- = pay1 + . . . + psnyn +pa"tN dt 5 Pkw?kwf i pkwsk(fh Yl, . . ., Yn) 

k=o 

(s = 1, . . .( 72) 

k=o 

We take Liapunov’s function in the form 

where 
T/’ = P + VI (y1, . . .I yn) (4.3) 

n av sz$ (PSlYl + * * - + PsnYn) = g, (Y12 + * - - + yn”) 

It is clear that if gl > 0, the form V, will be negative-definite, 
and if g, < 0, the form V, will be positive-definite. 

Taking into account (4.2), we obtain 

dV 
- = gl Q. V> e--mc%m+l+ gl (y12 + . . . + yn2) + pm+2~2 (e) + , . . dt 

. . . + pa,+N--m ; PkPk (% Yl, . . ., Yn) -t 
k=o 

f- sgl $ [pa’+” i PkMsk te> + 5 Pkwsk (8, ~1, . . ., Yn)] 
Ii=0 k=o 
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Analysing the expression for dV/dt, we find that the sign of dV/dt is 
determined by the sign of g1 for small enough values of p, yl, . . . . y,. 

If g1 < 0, we have stability of motion; if g1 > 0, we have instability 
of motion. 

Determining R,(8) and Q,(0) for the given system, we find that a con- 
dition of stability of the undisturbed motion of the systems (2.10) and 
(3.51, with a0 < 0, &, > (a, - 1)/2, is given by the inequality 

2x 

c sin 8 cos 6 + (10 cosNe sin 8 & > O 

;; lj8 (N + 1) sin*@- a0 cosN+r@ 

The number N has to be odd. ‘Ihe condition (4.4) connects the para- 
meters of the controlling element with the parameters of the object of 
control, 

In case g1 = 0, one has to pass to the next higher element, define 

and carry out the investigation from here on as before. If, however, g2 
is also zero, then one has to find the first number gk distinct from 
zero. If it is impossible to find such a number k that gk f 0, while 
g, = . . . = gk_ 1 = 0, then the problem on the stability of the given 
system remains unsolved. 

5. Let us consider the case when the right-hand side terms of the 
first n + 1 equations of the system (1.1) contain nonlinear terms. 

Suppose that in place of the system (1.1) we are given the system 

dxTX+2 
- = f(Q), dt 

‘Ihe variable coefficients have here the same meaning as before; the 
function f(a) has the form (1.21, and the expansion of the function @9, 
in powers of its variables contains no terms of degree less than two; 
the roots of the characteristic equation of the system (5.1) are assumed 
to have the properties specified earlier. 

Let 
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n-t2 n-f-2 
U?t = 2 dkaxo2 + z] mkaxa3 (k=l,...,n$-1) 

a=1 a==1 

Applying the transformations considered above to the system (5.1), we 
obtain a system of the type (3.5) where 

k=i k=l 

x, = --II, Y + CDs (S=I,...,?&) 

For the functions Y and Xs we again use the representations (2.4) and 

(2.5). 

For the system under consideration we find that aa = 2, &, = 1, and 
that the quantities uO, b,, aI, and b, depend on d,, and mka, while 

no = a, f&a), b, = ho f&m), UI = al &a, ma), ~31 =h f&x, Wia) 

If a0 f 0 and b, f 0, then the lowest-degree term of the expansion of 
the function fa(x) has an even degree, equal to two. In this case we 
have instability of motion. 

For stability of motion it is necessary to make sure that the degree 
a0 of the lowest-degree term of the function fa(x) be odd, and that the 
degree & of the lowest-degree term of the expansion of C&(X) be even, 
while at the same time IsO > aO. 

Tsking into account the results obtained earlier, we obtain the 
following necessary and sufficient conditions for the stability of the 
undisturbed motion of the system (5.1): 

a, (&a)== 0, b, (&) = 0 (5.2) 

ai (Glia, fylk,) < 0, bl (&t mka) < 0 (5.3) 

We call attention to the fact that it is impossible to fulfill the 
condition (5.2) when dh f 0, and N > 2 in Expression (1.2). Hence, in 
order to guarantee stability in this case it is necessary to have N= 2 
in Expression (1.2). 

The conditions (5.3) and (5.2) connect the parameters of the con- 
trolling element with the coefficients of the equations of the object of 
control and among them with the coefficients of the nonlinear terms. 



1518 S.A. GorbateRko 

BIBLIOGRAPHY 

1. Liapunov, A. M., Obshchaia xadecha ob ustoichiuosti dvizheniia 

(General Problen on the Stability of Motion), ONTX, 1935. 

2. Kamenkov, G. V., Ob ustoichivosti dvizheniia v odnom osobennom 

sluchae (On the stability of motion in a special case). Sb. nauchn. 

tr. Kazan. aviats. in-ta NO. 4, 1935. 

3. Kamenkov, G. V. , Ob ustoichfvosti dvizhenifa (On the stability of 

motion). Tr. Kazan. aviats. in-ta NO. 9, 1939. 

4. Lur’e, A.I., Nekotorye nelineinyt tadachi teorii avtonaticheskogo 

regulirovaniia (Some Nonlinear Problems of the Theory of Automatic 

Control). GITTL. 1951. 

Translated by H.P.T. 


